APPENDICITIS AND
ENTEROBIUS VERMICULARIS

Sarmast MH1, Maraghi S2, Elahi A3 & Mostofi NE4

ABSTRACT
Objective: To evaluate the appendicitis due to Enterobius vermicularis.
Design: Appendices were removed and histopathological examination was carried out.
Setting: The samples were obtained from patients admitted in Imam khomeini hospital at Ahvaz city, capital of Khouzestan Province, Southwestern part of Iran.
Subjects: 1253 appendices were examined in order to elucidate possible relationship between the incidence of Enterobius vermicularis and the origin of inflammation.
Main outcome: Assessment of the appendicitis due to Enterobius vermicularis.
Results: Nine out of 1253 cases (0.7%) were infected with Enterobius vermicularis, including 5 female and 4 male at the age of 8-36 years. During the operation in two female cases, ovarian cysts were revealed at the same time.
Conclusion: Existence of Enterobius vermicularis in appendicitis can cause the symptom and even inflammation of appendicitis.

KEYWORDS: Appendix, Enterobius vermicularis, Worms, Appendicitis

INTRODUCTION

Enterobius vermicularis is the most common intestinal parasite of man with the widest geographical distribution specially in the primary care setting regardless of race, socioeconomic or culture circumstances1. Over 200 million persons are infected in the world. The male pinworm is about 2-5mm in length and the female reaches a length of 8-13mm. Upon ingestion of embryonated egg, first stage larva hatches in the duodenum. The liberated rhabditiform larva moult twice before reaching adolescence in the jejunum and upper ileum2. The adult worms inhabit the cecum and adjacent portion of the large and small intestine. The female worms when fully gravid, migrate down the intestinal tract to pass out of the anus and deposit their eggs. The clinical symptoms are due largely to the perianal. Perianal and vaginal irritation caused by the migration of the gravid female worm. Although the natural habitat of pinworm is in large intestine, but it can migrate as an erratic worm and localize in other organs3. In this study 9 cases of appendicitis due to Enterobius vermicularis were assessed.
MATERIALS AND METHODS

1253 removed appendices within 5 years (1995–1999) at the department of surgery, Imam Khomeini Hospital, Ahvaz, Iran were sent to the pathology lab in order to elucidate possible relationships between the incidence of Enterobius vermicularis and the origin of inflammation in the appendicitis. The samples were cut in thickness stained with Haematoxilin – Eosin and examined under the microscope.

RESULTS

In 9 out of 1253 cases of appendicitis, Enterobius vermicularis was revealed in pathology examination of histological material. The features of the cases are summarized in table-I. Localization of E. vermicularis in appendicitis are seen in figures 1 and 2.

DISCUSSION

Many cases of Extra-intestinal localization of E. vermicularis have been reported, Invasion of peritoneal cavity via the female reproductive system may result in the formation of abscess or granuloma around eggs or worms. These are rarely of clinical significance, but have been thought to be responsible for a chronic pelvic peritonitis. Abscess of perianal was reported by Corea and extra–intestinal pinworm abscess associated with hernia by Tomieporth et al. Adult worms of E. vermicularis or ova have been seen in vaginal smears in urine and even in macerated human embryo. Cases of dysuria, nocturnal, enuresis, epididymitis, central haemorrhagic chorioretinopathy of the left eye due to E. v. have been reported. Granuloma formation around pinworm egg in the liver was reported by little et al (1973), Daly

Table-I: characteristics of patients with vermiform appendix

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age (year)</th>
<th>Perioperative diagnosis</th>
<th>Operative diagnosis</th>
<th>Report of surgical pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>19</td>
<td>Acute appendicitis</td>
<td>Appendix normal at gross pathology. Ovarian cyst</td>
<td>Veriform appendix with E.v. Ovarian luteal body cyst</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>8</td>
<td>Acute appendicitis</td>
<td>Acute suppurative appendicitis with perforation</td>
<td>Acute appendicitis with periappendicitis and E.v.</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>36</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis</td>
<td>Early acute appendicitis infection of E.v</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>35</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis ovarian cyst</td>
<td>Veriform appendix with E.v infection. Ovarian luteal body cyst</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>14</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis</td>
<td>Unremarkable appendix with body and ova. of E.v</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>11</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis</td>
<td>Appendix with dilated lumen containing E.v</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>34</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis with periappendicitis and E.v</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>18</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis with periappendicitis and E.v</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>13</td>
<td>Acute appendicitis</td>
<td>Acute appendicitis</td>
<td>Veriform appendix with E.v</td>
</tr>
</tbody>
</table>
and Baker19 Mondov and Gnepp20. An adult female pinworm found on thoracotomy for a non–calcified pulmonary nodule (Beaver et al) is thought to have grained access to peritoneal cavity via a necrotic area in an adenocarcinoma of the bowel21. Maraghi reported a case of pinworm in cerebrospinal fluid22. Chandrasoma and Mendis present evidence that pinworms are able to penetrate actively through the intact bowel wall23. Invasion of appendicitis may be expected to be the common occurrence, which it is, but relationship between this invasion and appendicitis remain unproved24,25. An association between histological findings of intramural parasites is recognized26,27. Budd and Armstrong reviewed 1419 appendicitis removed from cases of clinical appendicitis and 110 in other surgical procedures, \textit{E. v} was identified in 2.7\% of patients with clinical appendicitis28.

Our study indicated that although intestinal enterobiosis is common in children but the cases of \textit{E.v} found in appendicitis were seen in patients almost at the age of more than 14 and was most commonly seen in clinically acute appendicitis. During the operation of two female cases, ovarian cyst were revealed and at the same time, appendices were removed as well. Histopathological diagnosis was veriform appendix with \textit{E.vermicularis} and leuteal ovarian body cyst in both of them. Mastuoke et al found that, when at histological examination he saw a normal appendix and the clinical diagnosis was chronic appendicitis, he would almost invariably find pinworm in the lumen of the appendix29. Others found pinworms in less than 1\% of examined appendices30,31. Al Rabia et al reported 3\% histologically proven cases of \textit{Enterobious vermicularis} among 201 appendicectomy32. More recently, a study reviewing 2267 appendicitis showed that there was a highly significant differences in the incidence of \textit{E.v} in normal appendices and inflamed appendicitis which may indicate that the presence of \textit{E.v} in the appendix can give symptoms of acute appendicitis24.

CONCLUSION

Our clinical and histopathological observation indicate that \textit{Enterobius vermicularis} can cause acute appendicitis. \textit{E.v} in appendix should be considered during the course of any other chronic pelvic inflammatory diseases, specially in women.

ACKNOWLEDGMENT

We wish to express our sincere thanks to the staff members at Departments of Surgery and Pathology, Imam Khomeini Hospital, Mr. A. Jelowdar, Department of Mycoparasitology, School of Medicine, Ahvaz, Iran, Mrs. Abiavi and Mr. R.Hayati for their assistance. All of them made this study possible.
REFERENCES