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MECHANISMS OF DRUG RESISTANCE
IN CANCER CELLS

M. Perwaiz Igbal”®

SUMMARY

Development of drug resistance is a common problem in cancer chemotherapy. For the past several
years, investigators have been striving hard to unravel mechanisms of drug resistance in cancer cells.
Using different experimental models of cancer, some of the major mechanisms of drug resistance
identified in mammalian cells include: (a) Altered transport of the drug [decreased influx of the drug;
increased efflux of the drug (role of P-glycoprotein; role of polyglutamation; role of multiple drug
resistance associated protein)], (b) Increase in total amount of target enzyme/protein (gene amplifi-
cation), (c) Alteration in the target enzyme/protein (low affinity enzyme), (d) Elevation of cellular
glutathione, (e) Inhibition of drug-induced apoptosis (mutation in p53 tumor suppressor gene;
increased expression of bcl-xL gene).

Other novel mechanisms in various types of cancer cells include: Over-expression of cytochrome
P450 protein, ATP-binding cassette transporter ECRP, sodium channel protein, 5-adenosylmethionine
synthetase, and loss of functional retinoblastoma protein.

An understanding of these mechanisms provides us the basis for the development of drugs which can
specifically interact with the cause of resistance and restore the sensitivity of the tumor cell. This

reversal of drug resistance has a significant role in modern day cancer chemotherapy.
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MECHANISMS OF DRUG
RESISTANCE

Development of drug resistance is a common
problem in cancer chemotherapy. There is
plenty of information on “how microorganisms
develop resistance to various drugs”, but our
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knowledge regarding the mechanisms under-
lying drug resistance in mammalian cell is still
poor.

With recent development of techniques in the
field of cell and molecular biology, it has been
possible to unravel some of the molecular
mechanisms of resistance to anticancer drugs
in mammalian cells.

So far the following 5 major mechanisms of
drug resistance in cancer cells have been
identified:

1. Altered transport of the drug
i. decreased influx
ii. increased efflux
2. Increase in total amount of target enzyme/
protein (gene amplification).
3. Alteration in the target enzyme/protein
(low-affinity enzyme).
Elevation of cellular glutathione.
Inhibition of drug-induced apoptosis.
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The discovery of the first three mechanisms
of drug resistance was mainly because of the
extensive research work carried out on anti-
cancer drug methotrexate (MTX). This drug
has been in use since 1951, and has achieved
the prominence of being the most widely used
anticancer drug'. Itis a folate antagonist which
kills the proliferating cells by inhibiting the
enzyme dihydrofolate reductase (DHFR),
thereby blocking the pathway of de nove DNA
synthesis*®. This drug has produced excellent
results in controlling choriocarcinoma,
Burkitt’'s lymphoma, acute leukemia and pso-
riasis, but continued administration to patients
often results in emergence of drug resistance,
hence prompting many studies to unravel the
underlying mechanism.

1. ALTERED TRANSPORT OF THE DRUG

When there is a change in one of the trans-
port proteins of a particular drug, then the in-
flux of the drug in cancer cell or its efflux might
get affected, resulting into decreased quantity
of the drug inside the cancer cell.

i. Decreased influx of the drug

An alteration resulting from a mutation in
surface membrane protein that is involved in
the transport of the drug inside the cell or its
decreased expression might lead to reduced
uptake of the drug and, hence, the processes
inside the cell would not be inhibited. Figure 1
is the diagrammatic representation of this phe-
nomenon with regards to this mechanism of
resistance. A number of studies have revealed
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Figure 1: Altered transport of methotrexate (MTX) across
the cell membrane of MTX-sensitive and MTX-resistant
cells due to alteration in a transport protein for MTX.
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decreased influx of MTX due to low level or
nonfunctioning of folate carrier protein*®. This
phenotypic change arises because of either
decreased transcription or mutation in the gene
for folate carrier.

it. Increased efflux of the drug
Increased efflux of the drug from the
cancer cells would be because of any of the
following;:
a. Decreased polyglutamate formation.
b. Increased expression of P-glycoprotein.
¢. Increased expression of multiple drug
resistance protein.

a. Decreased polyglutamate formation
Retention of folate analogues, such as,
MTX, inside the cell is dependent upon their
conversion into polyglutamate form.
Polyglutamation is a process by which
multiple glutamic acid residues are added
enzymatically to such drugs. Decreased
level of activity of folylpolyglutamate syn-
thase, possibly because of mutations in its
gene, would lead to decreased
polyglutamation inside the cell and, hence,
rapid efflux of the drug. Increased efflux
would leave little amount of MTX inside
the cell to inhibit DHFR. This phenomenon
is diagrammatically shown in Figure 2.
Michael Kuehl and his associates have
even shown that the retention of MTX in
CCRF-CEM T-lymphoblast cells increased
as the number of glutamic acid residues in
the polyglutamate of MTX increased’.
Cowan and Jolivet have shown that the
resistance to MTX exhibited by a human

P oy et
o BTE [eeCididsd gfllan
&7 Ihe deug
Balgglitamainrs ol W18
=itk rpdwrd maeTi
Ingivased witfyn LTS TTE PR A
ol ke dreg

BATE S REEITIVE WTE B SIS

Figure 2: Polyglutamates of MTX and efflux of this drug
from MTX-sensitive and MTX-resistant cells.
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breast cancer cell line was due to decreased
formation of MTX polyglutamates in these
cells®. Similar results have been reported
by Pizzorno et al. in CCRF-CEM cells after
short-term, high dose treatment with
MTX".

A decreased accumulation of MTX
polyglutamates in cells can also be due to
increased breakdown due to increased ac-
tivity of the lysosomal enzyme folylglutamyl
hydrolase'™ ',

This process is achieved by the active trans-
port of MTX polyglutamate into lysosomes
followed by hydrolysis by folylpolyglutamyl
hydrolase'. This leads to increased efflux
of monoglutamate form of MTX from the
lysosomes and cells.

b. [Increased expression of P-glycoprotein
Multidrug resistance (MDR) describes a
complex phenotype whose predominant
feature is resistance to a wide range of
structurally unrelated cytotoxic agents,
many of which are anticancer drugs' ".
A wide variety of biochemical changes
have been detected in MDR cell lines. The
most consistent change is the increased
expression of P-glycoprotein, a plasma
membrane glycoprotein of molecular
weight 170,000. The level of P-glycoprotein
expression correlates with degree of drug
resistance' '*. This protein mediates en-
ergy-dependent export of a wide variety of
drugs involved in MDR. Figure 3 is the dia-
grammatic representation of this process.
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Figure 3: Expression of P-glycoprotein and efflux of drug
from MTX-sensitive and MTX-resistant cells.
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P-glycoprotein has been found to be present
in biopsy specimens from patients with
ovarian and sarcoma tumors and in leuke-
mic cells from patients with acute myelo-
cytic leukemia'” .

c. Multidrug Resistance Associated Protein
Few vears ago, another MDR-associated
protein (MEP) has been identified to be
present in most human tissues and
overexpressed in several tumor types. It is
a glycoprotein of molecular weight
190,000 and is associated with energy-
dependent efflux of various drugs™ .

2. INCREASE IN TOTAL AMOUNT OF
TARGET ENZYME/PROTEIN
(GENE AMPLIFICATION)

The first evidence of this phenomenon in
mammalian cells was provided by Schimke et
al. who demonstrated significant increase in
level of DHFR in an MTX-resistant cell
line* *. The sensitivity of the enzyme
towards the drug remains the same, however,
there would be an excess of enzyme relative to
the concentration of the drug inside the cell.
Thus, the pathways or biochemical processes
which were to be inhibited by the drug would
continue and the cell would escape inhibition
by the drug. Figure 4 illustrates this phenom-
enon in a diagrammatic manner.

A number of laboratories, including ours
have shown this process in a number of types
of cancer cells*'*.
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Figure 4: Total amount of dihydrofolate reductase (DHFR)
in MTX-sensitive and MTX-resistant cells.
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Figure 5 shows the concentration values
of DHER in MTX-sensitive and MTX-resistant
cell lines of L1210 leukemia. There is nearly
17 times more enzyme in MTX-resistant
L1210 leukemia cells compared to MTX-
sensitive cells.

Schimke, Bertino and their associates have
shown that although the increased level of the
enzyme, DHEFR, can be due to decreased ca-
tabolism of the enzyme due to its stabilization
as a result of binding to the inhibitor, vet en-
zyme induction 1s the major cause of this in-
crease in the enzyme level®. This enzyme in-
duction takes place as a result of gene amplifi-
cation, the process whereby a small part of the
genome, representing one or more genes, is
duplicated locally within a chromosome?®' %,
Such an amplification of genes is stable if it is
localized in a specific region of a chromosome
or unstable if localized in the nucleus as extra-
chromosomal DNA®*

Figure 6 is the diagrammatic representation
of an amplification of DHFR gene in chromo-
some number 2 of Chinese hamster ovary cells
made resistant to MTX. Compared to chromo-
some number 2 of the drug-sensitive cell, there
is an expanded region in the long arm of this
chromosome in the drug-resistant cell. Using
nuclear hybridization technique, it was found
that the drug-resistant cell has 150 copies of
DHFR gene®.

3. ALTERATION IN THE TARGET ENZYME/
PROTEIN (LOW AFFINITY ENZYME)

Presumably because of mutation, there is a
structural change in the target enzyme such
that the normal high affinity for the drug is
lost. When this happens, the enzyme would
no longer be inhibited by the drug at least at
the conventional doses. Figure 7 illustrates this
phenomenon diagrammatically.

Mutations in DHFR leading to a decreased
binding of MTX have been reported in a
number of tumors® *, These mutations
with one exception, have involved hydropho-
bic amino acids in the folate binding region of
the enzyme”. Evidence in support of this
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Figure &; Chromosome number 2 in MTX-sensitive
and MTX-resistant Chinese hamster ovary cells
[Reference no., 22).
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Figrre 72 Alteration in the active site of dihydrololate
reductase in MTX-resistant cell compared to
MTX-sensitive cell leading to loss of high affinity of en-
zyme for MTX.
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mechanism has been provided by a number of
laboratories™ 4,

Albrecht and his associates by a multi-step
selection procedure have isolated an MTX-
resistant Chinese hamster cell line which con-
tained structurally altered DHFRY. The mu-
tant enzyme had single pH optimum for the
reduction of dihydrofolate as compared to
double pH optima observed in the wild-type
enzyme. The mutant enzyme was also found
to have a dramatically altered affinity for MTX.
It was shown that to achieve a 50% inhibition
of the enzyme from the mutant cells, a 10-fold
excess of MTX was required when compared
to the amount of drug required to achieve a
50% inhibition of enzyme activity in parental
cells. We have also shown this low affinity
form of DHFR in leukemia cells many of them
resistant to MTX therapy** ¥

Perhaps, the success of high-dose MTX
therapy in many tumors is also based partly
on the ability of the large doses of MTX to in-
hibit even low affinity form of DHFR and,
thereby, blocking the DNA synthesis.

4. ELEVATION OF CELLULAR

GLUTATHIONE

Glutathione is a tripeptide (L-y-glutamyl-L-
cysteinyl-glycine) present virtually in all
mammalian cells. It offers protection to cells
by the destruction of reactive oxygen com-
pounds, free radicals, and other toxic com-
pounds of endogenous and exogenous origin.
Because of this property it has an important
role in drug detoxification.

There is considerable evidence of suggest that
the development of resistance to alkylating
agents and possibly, cisplatin is associated with
increased intracellular glutathione (GSH)
levels™ ™,

Drug-resistant tumor cells have been shown
to contain levels of GSH several orders of mag-
nitude higher than those measured in wild-type
cells. GSH may reduce cytotoxicity by facili-
tating the metabolism of drugs to less active
compounds or by detoxification of the free
radicals™ ™. Additionally, GSH may enhance
the repair of drug-induced injury, primarily at
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the DNA level. There is also considerable
evidence that sensitivity to alkylating agents
can be restored by depletion of intracellular
GSH,

Buthionine sulfoximine (BSO), an inhibitor
of GSH synthesis, has been demonstrated to
lower GSH levels in human ovarian cancer cell
lines, resulting in an increase in melphalan and
carboplatin cytotoxicity® ™. Similarly, in ani-
mal studies, BSO decreases GS5H levels in the
tumor cells resulting in increased melphalan
cytotoxicity and improved survival®. Hence,
(GSH is involved in the development of drug
resistance, and its depletion may restore or
enhance the cytotoxic activity of several drugs.

Ifosfamide (IFEX) is an analog of cyclophos-
phamide. It is increasingly used in a wide va-
riety of cancers. It has been shown to lower
intracellular GSH levels, thereby increasing the
sensitivity of the cells to cytotoxic drugs® *.

We have also observed a similar inhibitory
effect of IFEX on intracellular G5H levels in pe-
ripheral blood lymphocytes obtained from pa-
tients with ovarian carcinoma®™. This decline
in GSH levels by IFEX resulted in better re-
sponse of these patients to cisplatin treatment.
This provided another evidence that an increase
in intracellular GSH levels in cancer cells is one
of the major mechanisms of drug resistance.
Depletion of GSH overcomes this drug
resistance and restores the chemosensitivity of
malignant cells.

5. INHIBITION OF DRUG-INDUCED
APOPTOSIS

Cell death caused by a cytotoxic drug, such
as, MTX is also dependent on the presence of
factors that inhibit apoptosis, i.e., mutant p53
gene product, absence of retinoblastoma gene
product, or increase in the expression of the
bel-2 gene®™ ¥, Apoptosis is the “programmed-
cell death”.

Any factor inhibiting this programmed cell
death might lead to development of drug
resistance in the tumor.

1. Role of pbd3 tumor suppressor gene

Mutations in p53 gene or its deletion by
cytotoxic drugs could lead to defective
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apoptotic pathway resulting into drug-
resistant tumors. Scott Lowe and his
associates at Massachusetts Institute of
Technology, Boston have shown that tu-
mors in which p533 gene is fully expressed,
there is a high proportion of apoptoic cells.
Such tumors regressed after treatment with
adriamycin®. In contrast, p53 deficient tu-
mors (p53-/-) treated the same way with
adriamycin continued to grow and con-
tained very few apoptotic cells. It was sug-
gested that inactivation or absence of p53
gene product would make apoptosis defec-
tive in tumors leading to development of
drug resistance in such tumors. Reintro-
duction of normal p53 function in these
tumors would enhance apoptosis after
chemotherapw.

Fujiwara et al. have successfully used this
approach in enhancing response of a lung
carcinoma cell line to cisplatin®. All of
these lines of evidence show, the critical role
played by p53 gene in tumor regression
and its absence or defect leading to drug
resistance.

Role of Bcl-2 protein

A gene involved frequently in non-
Hodgkin's lymphomas, called bel-2 (for B-
cell lymphoma-2) codes for a protein which
blocks programmed cell death. Studies of
Bcl-2 protein function using gene transfer
approaches in mammalian cells, for ex-
ample, have demonstrated that overpro-
duction of this oncoprotein can render cells
relatively more resistant to induction of
drug-induced apoptosis® .

Although the precise mechanism by which
Bel-2 exerts its effect is not known, but un-
usual intracellular location of Bcl-2 (outer
mitochondrial membrane) suggests that it
may function in an antioxidant pathway.
Keeping in view of the fact that mitochon-
drial and ER membranes are major sites of
free-radical generation in cells, the associa-
tion of Bel-2 with outer mitochondrial mem-
brane and its ability to prevent accumula-
tion of lipid peroxides lend support to the
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notion that Bcl-2 inhibits drug-induced
apoptosis through an anti-oxidant
mechanism.

6. OTHER NOVEL MECHANISMS

In addition to the above mentioned major

mechanisms of drug resistance in cancer cells,
some other novel mechanisms have also been
suggested. These include:

I

i,

fit.

Owverproduction of cytochrome P450 protein™
A number of cytochrome P450 enzymes are
known to metabolise a wide variety of an-
ticancer drugs. McFadyen ¢t al. have re-
cently shown that overexpression of hu-
man cytochrome P450 CYP1B1 in Chinese

hamstor ovary cells decrcases the sensitiv-

it";' of these cells to the anticancer d_fg_g

- e -

docetaxel™.

Quverexpression of ATP-binding cassette
transporter breast cancer resistant

protein (BCRP)

Overexpression of an ATP-binding cassette
transporter BCRP was found to be associ-
ated with increased efflux of certain
topoisomerase inhibitors from human
colon cancer cells™.

Ouverexpression of a sodium channel protein
Increased expression of alpha subunit of
the amiloride-sensitive sodium channel in
an MCF-7 human breast cancer cell line re-
sistant to a number of drugs was found to
be associated with increased efflux of these
drugs without increase in MDR-1 or MRP
expression™.

. Querexpression of S-adensoylmethionine

Vol. 19 No. 2

synthetase

S-Adenosyimethionine synthetase
which catalyzes the synthesis of
adenosylmethionine from methionine and
ATP, is the major donor for transmethyla-
tion reactions. Overexpression of this en-
zyme In murine neuroblastoma (MNB) cells
was associated with increased resistance to
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a nucleoside analogue. This cellular
adaptation allowed sufficient
adenosylmethionine to be synthesized, so
that the viability of the MNB cell could be
maintained even in the presence of high
concentrations of adenosyl homocysteine™.

. Loss of functional retinoblastoma protein *7.
Loss of functional retinoblastoma protein
may contribute to antimetabolite
resistance, because cells lacking this pro-
tein may have increased levels of enzymes
associated with proliferation (e.g., DHFR
and thymidylate synthase) as a conse-
quence of increased levels of free E2F-1, a
transcription factor that, in a heterodimeric
complex with another protein, DP-1, is nor-
mally inactive, because it is bound to
hypophosphorylated retinoblastoma pro-
tein®. When cells progress from the G, to
the S phase, retinoblastoma protein gets
hyperphosphorylated and releases the
bound E2F-1-DP-1 heterodimer, which
then activates the transcription of genes
involved in DNA synthesis. A human os-
teosarcoma cell line that lacks retinoblas-
toma protein, Sa0s2, was found to be in-
trinsically resistant to MTX, unlike cells
with retinoblastoma protein. When a
cDNA encoding retinoblastoma protein
was introduced into 5a0s2 cells, their sen-
sitivity to MTX was restored, in association
with decreased levels of DHFR mRNA and
protein™. Low levels of retinoblastoma
protein were found in 18 percent of pa-
tients with acute lymphocytic leukemia and
in 19 percent of those with acute myelo-
cytic leukemia™ ™, However, the effect of
the lack of retinoblastoma protein on the
sensitivity of cells to MTX and other drugs
has not been determined.

CONCLUSION

An understanding of the above mentioned
mechanisms provides us the basis for the de-
velopment of drugs which can specifically in-
teract with the cause of resistance and restore
the sensitivity of the tumor cell. This reversal

of drug resistance has a significant role in
modern da}r cancer ::h{:-m(}therﬂpy_
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